Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

CT

giải phương trình:

\(\cos10-\cos8x-\cos6x+1=0\)

AH
16 tháng 9 2020 lúc 21:57

Lời giải:

PT $\Leftrightarrow (\cos 10x-\cos 6x)+(1-\cos 8x)=0$

$\Leftrightarrow -2\sin 8x\sin 2x+2\sin ^24x=0$

$\Leftrightarrow \sin 8x\sin 2x-\sin ^24x=0$

$\Leftrightarrow 2\sin 4x\cos 4x\sin 2x-\sin ^24x=0$

$\Leftrightarrow \sin 4x[2\cos 4x\sin 2x-\sin 4x]=0$

$\Leftrightarrow \sin 4x[2\cos 4x\sin 2x-2\sin 2x\cos 2x]=0$

$\Leftrightarrow 2\sin 4x\sin 2x(\cos 4x-\cos 2x)=0$

$\Leftrightarrow 2\sin 4x\sin 2x(2\cos ^22x-1-\cos 2x)=0$

$\Leftrightarrow 2\sin 4x\sin 2x(2\cos 2x+1)(\cos 2x-1)=0$

Đến đây thì dễ rồi.

 

Bình luận (0)
NL
16 tháng 9 2020 lúc 22:01

Chắc cái đầu là cos10x?

\(\Leftrightarrow cos10x-cos6x+1-cos8x=0\)

\(\Leftrightarrow-2sin8x.sin2x+2sin^24x=0\)

\(\Leftrightarrow-4sin4x.cos4x.sin2x+2sin^24x=0\)

\(\Leftrightarrow-sin4x.cos4x.sin2x+sin4x.sin2x.cos2x=0\)

\(\Leftrightarrow sin4x.sin2x\left(cos2x-cos4x\right)=0\)

\(\Leftrightarrow sinx.sin2x.sin3x.sin4x=0\)

\(\Leftrightarrow sin3x.sin4x=0\)

\(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
TN
Xem chi tiết
CT
Xem chi tiết
DH
Xem chi tiết
TL
Xem chi tiết
ND
Xem chi tiết
NC
Xem chi tiết