Violympic toán 9

DC

Giải phương trình :

a,\(13x-2\sqrt{x}.\left(3+2y\right)+y^2+1=0\)

b,\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)

c,\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

d,\(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)

NT
6 tháng 10 2019 lúc 21:10

b,ĐK:\(-3\le x\le\frac{3}{2}\)

\(PT\Leftrightarrow x-1+4\left(\sqrt{x+3}-2\right)+2\left(\sqrt{3-2x}-1\right)=0\)

\(\Leftrightarrow x-1+\frac{4\left(x-1\right)}{\sqrt{x+3}+2}+\frac{2\left(2-2x\right)}{\sqrt{3-2x}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}\right)=0\)

Với \(x\ge-3\) \(\Rightarrow\frac{4}{\sqrt{x+3}+2}>0\) và \(3-2x\le9\Rightarrow-\frac{4}{\sqrt{3-2x}+1}\ge-1\)

\(\Rightarrow1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}>0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)(tm)

Bình luận (0)
LH
6 tháng 10 2019 lúc 22:13

c,Đk: \(x\ge2,y\ge3,z\ge5\)

pt <=> \(x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\)

<=> \(\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)

<=>\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=\)0

=>\(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)(t/m)

d, \(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\left(đk:x,y,z\ge\frac{1}{4}\right)\)

<=> \(4x+4y+4z=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)

<=> \(\left(4x-1\right)-2\sqrt{4x-1}+1+\left(4y-1\right)-2\sqrt{4y-1}+1+\left(4z-1\right)-2\sqrt{4z-1}+1=0\)

<=>\(\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=\frac{1}{2}\end{matrix}\right.\)(tm)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
KN
Xem chi tiết
DC
Xem chi tiết
NT
Xem chi tiết
AD
Xem chi tiết
AQ
Xem chi tiết
WY
Xem chi tiết
NC
Xem chi tiết
PT
Xem chi tiết