Chương I - Căn bậc hai. Căn bậc ba

HD

Giải phương trình: \(3x^3+11x^2-3x+7-24x\sqrt{8x-1}+3\sqrt{8x-1}=0\)

NL
19 tháng 4 2019 lúc 18:27

ĐKXĐ: \(x\ge\frac{1}{8}\)

\(3x^3+9x^2+9x+3+2x^2-12x+4-3\sqrt{8x-1}\left(8x-1\right)=0\)

\(\Leftrightarrow3\left(x+1\right)^3+2x^2+4x+2-16x+2-3\sqrt{\left(8x-1\right)^3}=0\)

\(\Leftrightarrow3\left(x+1\right)^3+2\left(x+1\right)^2-3\sqrt{\left(8x-1\right)^3}-2\left(8x-1\right)=0\)

Đặt \(\left\{{}\begin{matrix}x+1=a>0\\\sqrt{8x-1}=b\ge0\end{matrix}\right.\) phương trình trở thành:

\(3a^3+2a^2-3b^3-2b^2=0\)

\(\Leftrightarrow3\left(a-b\right)\left(a^2+ab+b^2\right)+2\left(a+b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(3a^2+3ab+3b^2+2a+2b\right)=0\)

\(\Leftrightarrow a-b=0\) (do \(\left\{{}\begin{matrix}a>0\\b\ge0\end{matrix}\right.\) \(\Rightarrow3a^2+3ab+3b^2+2a+2b>0\))

\(\Rightarrow a=b\Rightarrow x+1=\sqrt{8x-1}\)

\(\Leftrightarrow\left(x+1\right)^2=8x-1\)

\(\Leftrightarrow x^2-6x+2=0\Rightarrow x=3\pm\sqrt{7}\)

Bình luận (0)

Các câu hỏi tương tự
QE
Xem chi tiết
HC
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết
NC
Xem chi tiết
LG
Xem chi tiết
AD
Xem chi tiết
LG
Xem chi tiết
GO
Xem chi tiết