1) Tìm m để phương trình \(\frac{1}{3^{\left|x-1\right|}}=5m-3\) có một nghiệm duy nhất
2) Giải 42x-m = 8x (m là tham số)
a. x=2m
b. x=-m
c. x=m
d. x=-2m
giải pt sau:
\(2^{2x-3}-3.2^{x-2}+1=0\)
Cho em hỏi câu này giải phương trình (x^2 +4x)* căn bậc 2 (2x-3)=1
3. Tìm tập xác định của các hàm số sau:
a) \(y = 2^{x^2-1}\)
b) \(y = x^{-4}\)
c) \(y = (x-1)^{-3}\)
d) \(y = (x^2-1)^{4\pi}\)
e) \(y = \ln (4x^2-1)\)
f) \(y = \log_{3} (x^2-2)\)
h) \(y = (2x^2-4x)^{\frac{-1}{3}}\)
k) \(y = (2x-1)^{-4}\)
l) \(y = \log_{3} (x^2-1) + \ln (x-2) + e^{\frac{x}{x-1}}\)
4. Tính đạo hàm của các hàm số sau:
a) \(y = (3x^2-4x+1)^{-4}\)
b) \(y = 3^{x^2-1} + e^{-x+1}\)
c) \(y = \ln (x^2-4x) + \log_{3} (2x-1)\)
d) \(y =x . \ln x + 2^{\frac{x-1}{x+1}}\)
e) \(y = x^{-7} - \ln (x^2-1)\)
giải pt:
a) \(\left(\sqrt{5}+2\right)^{x-1}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)
b) \(log_{x^2+3x}\left(x+3\right)-1=0\)
Gọi m0 là giá trị nhỏ nhất để bất phương trình:
\(1+\log_2\left(2-x\right)-2\log_2\left(m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\right)\le-\log_2\left(x+1\right)\) có nghiệm. m0 thuộc khoảng nào sau đây:
A. (-9;-8) B. (9;10) C. (-10;-9) D. (8;9)
Tìm đạo hàm của các hàm số sau:
1, \(y=3^{(\dfrac{x}{\ln(x)})}\)
2, \(y=\dfrac{1}{2}tan^2(x)+\ln(tan(x))\)
3, \(y=\sqrt[3]{ln^2(2x)}\)
2\(^{2x^2+1}\)- 9*2\(^{x^2+x}\) + 2\(^{2x+2}\)=0