§2. Phương trình quy về phương trình bậc nhất, bậc hai

PG

Giải phương trình :

\(2\left(2x^2-3x+1\right)^2-3\left(2x^2-3x+1\right)+1=x\)

MK
9 tháng 5 2016 lúc 13:35

Đặt \(y=2x^2-3x+1=2\left(x-\frac{3}{4}\right)^2-\frac{1}{8}\)

Điều kiện \(y\ge\frac{1}{8}\) (*)

Ta được hệ phương trình 2  ẩn \(x,y\)

\(\begin{cases}y=2x^2-3x+1\\x=2y^2-3y+1\end{cases}\) (a)

Trừ từng vế của hệ phương trình (a) ta được :

\(y-x=2\left(x^2-y^2\right)-3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x+y-1\right)\)

                                               \(\Leftrightarrow\begin{cases}y=1-\frac{\sqrt{2}}{2}\\y=1+\frac{\sqrt{2}}{2}\end{cases}\)

Cả 2 nghiệm này đều thỏa mãn điều kiện (*)

Do \(x=y\) nên ta được 2 nghiệm \(x\) tương ứng là \(x=1-\frac{\sqrt{2}}{2};x=1+\frac{\sqrt{2}}{2}\)

Thay \(x=1-y\) vào phương trình thứ 2 của hệ (a) ta được :

\(1-y=2y^2-3t+1\Leftrightarrow2y^2-2y=0\Leftrightarrow\left[\begin{array}{nghiempt}y=0\\y=1\end{array}\right.\)

Hai nghiệm này cùng thỏa mãn điều kiện (*)

Do \(x=1-y\) nên ta được 2 nghiệm \(x\) tương ứng \(x=1;x=0\)

Vậy phương trình có 4 nghiệm :

\(x=1;x=0;x=1-\frac{\sqrt{2}}{2};x=1+\frac{\sqrt{2}}{2}\)

Bình luận (0)
LH
11 tháng 5 2016 lúc 21:41

nhận thấy vế trái có dạng là một phương trình bậc hai luôn rồi,ta chỉ cần phân tích nó thành tích của 2 cái nhân với nhau,cụ thể là 

(2x^2-3x+1-1)(2(x^2-3x+1)-1)=x.

(2x^2-3x)(4x^2-6x+1)=x

x(2x-3)(4x^2-6x+1)=x

vậy x=0 hoặc (2x-3)(4x^2-6x+1)=1. bạn bấm máy tính nữa là xong.

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
VL
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
BH
Xem chi tiết
ML
Xem chi tiết