Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương III - Hệ hai phương trình bậc nhất hai ẩn

BA

Giải phương trình: \(2+3\sqrt[3]{9x^2\left(x+2\right)}=2x+3\sqrt[3]{3x\left(x+2\right)^2}\)

PA
17 tháng 10 2017 lúc 21:25

\(2+3\sqrt[3]{9x^2\left(x+2\right)}=2x+3\sqrt[3]{3x\left(x+2\right)^2}\)

\(\Leftrightarrow2+3\sqrt[3]{3x\left(x+2\right)^2}-3\sqrt[3]{9x^2\left(x+2\right)}-2=0\)

\(\Leftrightarrow\left(\sqrt[3]{3x}\right)^3-3\times\left(\sqrt[3]{3x}\right)^2\times\sqrt[3]{x+2}+3\times\sqrt[3]{3x}\times\left(\sqrt[3]{x+2}\right)^2-\left(\sqrt[3]{x+2}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt[3]{3x}-\sqrt[3]{x+2}\right)^3=0\)

\(\Leftrightarrow\sqrt[3]{3x}=\sqrt[3]{x+2}\)

\(\Leftrightarrow3x=x+2\)

\(\Leftrightarrow x=1\)

Vậy pt có một nghiệm duy nhất x = 1 ~!~"

Bình luận (3)

Các câu hỏi tương tự
VD
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết