f(x)= x2+2(m-1)x +m+5
Tìm m để bpt f(x) < 0 có nghiệm
Giải hệ bpt sau: . \(\left\{{}\begin{matrix}X^2-4X+3>0\\X^2-6X+8>0\end{matrix}\right.\)
Tìm tất cả các giá trị của tham số m để phương trình \(\text{x}^2-\left(2m-3\right)x+m^2-3m=0\) có hai nghiệm x1, x2 phân biệt thoả mãn x1 < x2 < 6
A. \(\text{m}< 6\) B. \(\text{m}>9\) C. \(6< m< \dfrac{15}{2}\) D. \(\dfrac{15}{2}< m< 9\)
Bài 2: Xét sự tương đương của các cặp BPT sau
a, \(4x-6+\frac{1}{x-2}\ge2+\frac{1}{x-2}\) và \(4x-8\ge0\)
b, \(3x-2+\frac{1}{x-3}\ge1+\frac{1}{x-3}\) và \(3x-3\ge0\)
c, \(x+4\ge0\) và \(\left(x-1\right)^2\left(x+4\right)>0\)
d,\(\left(x^2-4x+5\right)\left(x-5\right)>0\) và \(x-5>0\)
e, \(x-12\ge0\) và \(\left(x-2\right)^2\ge0\)
f, \(\sqrt{\left(x-1\right)\left(x-2\right)}\ge x\) và \(\sqrt{x-1}.\sqrt{x-2}\ge x\)
Bài 3. Giải bất phương trình
a, \(|5x – 3| < 2\)
b, \(\left|3x-2\right|\ge6\)
c, \(\left|2x-1\right|\le x+2\)
d, \(\left|3x+7\right|>2x+3\)
e, \(\sqrt{x-3}\ge\sqrt{3-x}\)
f, \(\sqrt{x-1}< 3+\sqrt{x-1}\)
g, \(\frac{x-2}{\sqrt{x-4}}\ge\frac{4}{\sqrt{x-4}}\)
h, \(\left(x+5\right)\sqrt{\left(x-3\right)\left(x^2-10x+25\right)}>0\)
giải bpt : \(\sqrt{-x^2-4x+21}< x+3\)
f(x)=\(\dfrac{x^2+16}{2x}\)t(x>0) tìm hàm số x đạt giá trị nhỉ nhất thì x nằm trong khoảng bao nhiêu
Đặt √x = t, x ≥ 0 => t ≥ 0.
Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)
Nếu t = 0, t = 1, f(t) = 1 >0
Với 0 < t <1, f(t) = t8 + (t2 - t5)+1 - t
t8 > 0, 1 - t > 0, t2 - t5 = t3(1 – t) > 0. Suy ra f(t) > 0.
Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0
Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0.
mọi người giải thích hộ mình chỗ này nhé: t2 - t5 = t3(1 – t) > 0