Violympic toán 9

NN

giải hpt:

a) \(\left\{{}\begin{matrix}x^2=xy^2+2\\y^2=yx^2+2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x^2-2y^2=7x\\y^2-2x^2=7y\end{matrix}\right.\)

NL
23 tháng 2 2019 lúc 12:21

a/ Trừ vế cho vế ta được: \(x^2-y^2=xy^2-x^2y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+xy\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y+xy\right)=0\)

TH1: \(x=y\) thay vào pt đầu:

\(x^2=x^3+2\Leftrightarrow x^3-x^2+2=0\Rightarrow x=-1;y=-1\)

TH2: \(x+y+xy=0\Leftrightarrow y\left(x+1\right)=-x\Rightarrow y=\dfrac{-x}{x+1}\) (\(x=-1\) không phải nghiệm)

Thay vào pt đầu: \(x^2=\dfrac{x^3}{\left(x+1\right)^2}+2\Leftrightarrow\left(x^2+x\right)^2=x^3+2\left(x+1\right)^2\)

\(\Leftrightarrow x^4+x^3-x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\Rightarrow y=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\Rightarrow y=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Bình luận (0)
NL
23 tháng 2 2019 lúc 12:28

b/ Trừ vế cho vế: \(3x^2-3y^2=7\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(3x+3y\right)=7\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(3x+3y-7\right)=0\)

TH1: \(x-y=0\Leftrightarrow x=y\) thay vào pt đầu:

\(x^2-2x^2=7x\Leftrightarrow x^2+7x=0\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=-7\end{matrix}\right.\)

TH2: \(3x+3y=7\Leftrightarrow y=\dfrac{7-3x}{3}=\dfrac{7}{3}-x\) thay vào pt đầu:

\(x^2-2\left(\dfrac{7}{3}-x\right)^2=7x\Leftrightarrow x^2-\dfrac{7}{3}x+\dfrac{98}{9}=0\) (vô nghiệm)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
KZ
Xem chi tiết
WY
Xem chi tiết
PT
Xem chi tiết
PQ
Xem chi tiết
EO
Xem chi tiết
NA
Xem chi tiết
PT
Xem chi tiết
BL
Xem chi tiết