Chương III - Hệ hai phương trình bậc nhất hai ẩn

HT

giải hệ pt:\(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=3\\\dfrac{2}{x+y}-\dfrac{3}{x-y}=1\end{matrix}\right.\)

H24
30 tháng 12 2017 lúc 20:34

Đặt ẩn phụ nhé

\(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b=< =>\int_{2a-3b=1}^{a+b=3}< =>\int_{2.\left(3-b\right)-3b=1}^{,a=3-b}< =>\int_{b=1}^{a=2}\)

<=>\(\dfrac{1}{x+y}=2;\dfrac{1}{x-y}=1< =>\int_{x-y=1}^{x+y=2}< =>\int_{y=0,5}^{x=1,5}\)

Bình luận (3)
DD
31 tháng 12 2017 lúc 9:21

Đặt :

\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)

Ta có hệ phương trình :

\(\left\{{}\begin{matrix}u+v=3\\2u-3v=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u+2v=6\\2u-3v=1\end{matrix}\right.\)

\(\Leftrightarrow5v=5\Leftrightarrow v=1\)

Thay \(v=1\) vào phương trình thứ nhất ta đc :

\(u+1=3\Leftrightarrow u=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=2\\\dfrac{1}{x-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\\x-y=1\end{matrix}\right.\)

\(\Leftrightarrow2y=-\dfrac{1}{2}\Rightarrow y=-\dfrac{1}{4}\)

Thay \(y=-\dfrac{1}{4}\) vào phương trình thứ 2 ta được :

\(x+\dfrac{1}{4}=1\Leftrightarrow x=\dfrac{3}{4}\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

Bình luận (0)
MS
30 tháng 12 2017 lúc 20:40

Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=3\\\dfrac{2}{x+y}-\dfrac{3}{x-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-y+x+y}{\left(x+y\right)\left(x-y\right)}=3\\\dfrac{2x-2y+3x+3y}{\left(x+y\right)\left(x-y\right)}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=3\left(x+y\right)\left(x-y\right)\\5x+y=\left(x+y\right)\left(x-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=3\left(x+y\right)\left(x-y\right)\\15x+3y=3\left(x+y\right)\left(x-y\right)\end{matrix}\right.\)

\(\Rightarrow2x=15x+3y\)

\(\Rightarrow15x+3y-2x=0\)

\(\Rightarrow13x+3y=0\)

\(\Rightarrow13x=-3y\Leftrightarrow x=-\dfrac{3}{13}y\)

Thay vào pt rồi tìm \(x;y\)

Bình luận (0)
ND
30 tháng 12 2017 lúc 20:47

\(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=3\\\dfrac{2}{x+y}-\dfrac{3}{x-y}=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{2x}{\left(x+y\right)\left(x-y\right)}=3\\\dfrac{2\left(x-y\right)-3\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x=3\left(x+y\right)\left(x-y\right)\\-x-5y=\left(x+y\right)\left(x-y\right)\end{matrix}\right.\\ \Rightarrow\dfrac{2x}{3}=-x-5y\\ \Rightarrow\dfrac{2x}{3}+x=-5y\\ \Rightarrow\dfrac{5x}{3}=-5y\\ \Rightarrow\dfrac{x}{3}=-y\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QT
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
Na
Xem chi tiết