Chương III - Hệ hai phương trình bậc nhất hai ẩn

DN

Giải hệ phương trình

a)\(\left\{{}\begin{matrix}\dfrac{2x-1}{x+2}-\dfrac{5}{y-1}=-\dfrac{14}{3}\\\dfrac{3}{x+2}+\dfrac{\left(2y+3\right)}{y-1}=8\end{matrix}\right.\)

b)\(\left\{{}\begin{matrix}\dfrac{2x}{1-x}+\dfrac{3}{y+2}=-\dfrac{2}{5}\\\dfrac{5}{1-x}-\dfrac{4y}{y+2}=\dfrac{1}{10}\end{matrix}\right.\)

NT
30 tháng 12 2022 lúc 22:27

a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x+4-5}{x+2}-\dfrac{5}{y-1}=-\dfrac{14}{3}\\\dfrac{3}{x+2}+\dfrac{2y-2+5}{y-1}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-5}{x+2}-\dfrac{5}{y-1}=-\dfrac{14}{3}-2=-\dfrac{20}{3}\\\dfrac{3}{x+2}+\dfrac{5}{y-1}=6\end{matrix}\right.\)

=>x+2=3 và y-1=1

=>x=1 và y=2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2x}{x-1}+\dfrac{3}{y+2}=\dfrac{-2}{5}\\\dfrac{-5}{x-1}-\dfrac{4y}{y+2}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2x+2-2}{x-1}+\dfrac{3}{y+2}=\dfrac{-2}{5}\\\dfrac{-5}{x-1}-\dfrac{4y+8-8}{y+2}=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{x-1}+\dfrac{3}{y+2}=-\dfrac{2}{5}+2=\dfrac{8}{5}\\\dfrac{-5}{x-1}+\dfrac{8}{y+2}=\dfrac{1}{10}-4=-\dfrac{39}{10}\end{matrix}\right.\)

=>x-1=-2/49 và y+2=-5/79

=>x=47/49 và y=-5/79-2=-163/79

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
QT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
PL
Xem chi tiết
CT
Xem chi tiết