Violympic toán 9

HD

giải hệ pt

\(\left\{{}\begin{matrix}\sqrt{x+\frac{1}{y}}+\sqrt{x+y-3}=3\\2x+y+\frac{1}{y}=8\end{matrix}\right.\)

MV
28 tháng 6 2020 lúc 11:46
Điều kiện: \(y\ne0\); \(x+\frac{1}{y}\)\(\ge0\); \(x+y\ge3\).Đặt: \(a=\sqrt{x+\frac{1}{y}}\) ; \(b=\sqrt{x+y-3}\) \((a,b\ge0)\)Ta có: \(2x+y+\frac{1}{y}=8\)\(\ \Leftrightarrow\) \(\left(x+\frac{1}{y}\right)+\left(x+y-3\right)=5\) \(\Leftrightarrow\) \(a^2+b^2=5\)\(^{ }\)Hệ phương trình \(\Leftrightarrow\) \(\begin{cases}a+b=3\\a^2+b^2=5\end{cases}\)\(\ \Leftrightarrow\)\(\begin{cases}a=3-b\\\left(3-b\right)^2+b^2=5\ \left(1\right)\end{cases}\) \(\left(1\right)\Leftrightarrow\) \(b^2-6b+9+b^2=5\) \(\Leftrightarrow\) \(2b^2-6b+4=0\) \(\Leftrightarrow\) \(\Delta'=\left(-3\right)^2-2.4=1>0\) \(\Rightarrow\ \left(1\right)\) có hai nghiệm phân biệt: \(b_1=\frac{3+\sqrt{1}}{2}=2\) ; \(b_2=\frac{3-\sqrt{1}}{2}=1\) *Với \(b=2\) \(\Rightarrow\ a=3-b=3-2=1\)Ta có: \(\begin{cases}\sqrt{x+y-3}=2\\\sqrt{x+\frac{1}{y}}=1\ \end{cases}\)\(\ \) \(\Leftrightarrow\) \(\begin{cases}x+y-3=4\\x+\frac{1}{y}=1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x+y=7\\x+\frac{1}{y}=1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}y-\frac{1}{y}=6\\x+y=7\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}y^2-6y-1=0\\x+y=7\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left[\begin{matrix}y=3+\sqrt{10}\\y=3-\sqrt{10}\end{matrix}\right.\\x=7-y\end{cases}\) \(\Leftrightarrow\) \(\left[\begin{matrix}\begin{cases}y=3+\sqrt{10}\\x=4-\sqrt{10}\end{cases}\\\begin{cases}y=3-\sqrt{10}\\x=4+\sqrt{10}\end{cases}\end{matrix}\right.\) *Với \(b=1\ \Rightarrow\ a=3-b=3-1=2\)Ta có: \(\begin{cases}\sqrt{x+y-3}=1\\\sqrt{x+\frac{1}{y}}=2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x+y=4\\x+\frac{1}{y}=4\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}y-\frac{1}{y}=0\\x+y=4\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}y^2-1=0\\x+y=4\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left[\begin{matrix}y=1\\y=-1\end{matrix}\right.\\x=4-y\end{cases}\) \(\Leftrightarrow\) \(\left[\begin{matrix}\begin{cases}y=1\\x=3\end{cases}\\\begin{cases}y=-1\\x=5\end{cases}\end{matrix}\right.\)
Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
AM
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
PQ
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết
ML
Xem chi tiết
H24
Xem chi tiết