Bài 3: Giải hệ phương trình bằng phương pháp thế

LN

Giải hệ pt: \(\left\{{}\begin{matrix}\frac{15}{x}-\frac{7}{y}=9\\\frac{4}{x}+\frac{9}{y}=35\end{matrix}\right.\)

NL
14 tháng 3 2020 lúc 21:31

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\)

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}15a-7b=9\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60a-28b=36\\60a+135b=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-163b=-489\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a+9.3=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=2\\\frac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là (x;y) = (\(\frac{1}{2};\frac{1}{3}\))

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AN
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
PY
Xem chi tiết
JB
Xem chi tiết
PY
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
DA
Xem chi tiết