Đề:\(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\). Đề nhớ ghi đủ nha
Áp dụng hằng đẳng thức:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Leftrightarrow1-3xyz=1-xy-yz-zx\)
\(\Leftrightarrow3xyz=xy+yz+zx\)(1)
Lại có: \(1=x+y+z\)
\(\Rightarrow1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=1+2\left(xy+yz+zx\right)\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)(2)
Từ (1) và (2) ta suy ra: \(3xyz=0\)
\(\Leftrightarrow xyz=0\)
\(\Rightarrow\) x=0 hoặc y=0 hoặc z=0
*Xét x=0, ta có: \(\left\{{}\begin{matrix}y+z=1\left(3\right)\\y^2+z^2=1\\y^3+z^3=1\end{matrix}\right.\)
Từ \(\left(3\right)\Leftrightarrow y^2+z^2+2yz=1\)
\(\Leftrightarrow1+2xy=1\)
\(\Leftrightarrow2xy=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}z=1\\y=1\end{matrix}\right.\)
Tương tự, ta giải các TH kia cũng vậy:
\(y=0\Leftrightarrow\left[{}\begin{matrix}z=0\\x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(z=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy nghiệm của phương trình trên là:
\(\left(x;y;z\right)=\left\{\left(1;0;0\right);\left(0;1;0\right);\left(0;0;1\right)\right\}\)