Chương III - Hệ hai phương trình bậc nhất hai ẩn

XL

Giải hệ phương trình sau:

\(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)

NT
28 tháng 2 2021 lúc 22:38

a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)

Bình luận (0)
H24
28 tháng 2 2021 lúc 22:38

$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$

`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$

`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$

Vậy HPT vô nghiệm

Bình luận (0)
H24
28 tháng 2 2021 lúc 22:40

$\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\\\end{cases}$

`<=>` $\begin{cases}|x-2|+2|y-1|=9\\2x+2|y-1|=-2\\\end{cases}$

`<=>` $\begin{cases}|x-2|-2x=11\\x+|y-1|=-1\\\end{cases}$

`<=>` $\begin{cases}|x-2|=2x+11\\x+|y-1|=-1\\\end{cases}$

Đến đây dễ rồi bạn tự giải :D

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
DN
Xem chi tiết
QT
Xem chi tiết