Violympic toán 9

NT

Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3y+2xy^3-x^2-2y^2+xy=1\\\frac{x}{x^4+y^2}+\frac{y}{y^4+x^2}=1\end{matrix}\right.\)

NL
10 tháng 3 2019 lúc 17:36

\(x^2\left(xy-1\right)+2y^2\left(xy-1\right)+\left(xy-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left(x^2+2y^2+1\right)=0\)

\(\Leftrightarrow xy=1\) (do \(x^2+2y^2+1>0\)) \(\Rightarrow y=\frac{1}{x}\)

Thay vào pt dưới:

\(\frac{x}{x^4+\frac{1}{x^2}}+\frac{\frac{1}{x}}{\frac{1}{x^4}+x^2}=1\Leftrightarrow\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=1\Leftrightarrow\frac{2x^3}{x^6+1}=1\)

\(\Leftrightarrow x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PQ
Xem chi tiết
KA
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
KZ
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết