Violympic toán 9

H24

giải hệ phương trình \(\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^2+\left(\frac{x}{y}\right)^3=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\)

NL
23 tháng 11 2019 lúc 14:08

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y}-2\right)\left(\left(\frac{x}{y}\right)^2+3\left(\frac{x}{y}\right)+6\right)=0\\\left(xy-2\right)\left(xy+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\\left[{}\begin{matrix}xy=2\\xy=-3\end{matrix}\right.\end{matrix}\right.\) (loại \(xy=-3\))

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2y\\xy=2\end{matrix}\right.\) \(\Rightarrow2y^2=2\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-1\Rightarrow x=-2\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
BL
23 tháng 11 2019 lúc 14:16

+ ĐKXĐ : \(y\ne0\)

+ Dễ thấy x = 0 ko là nghiệm của hpt đã cho

+ \(\left(xy\right)^2+xy=6\Rightarrow\left(xy\right)^2+xy-6=0\)

\(\Rightarrow\left(xy-2\right)\left(xy+3\right)=0\)\(\Rightarrow\left[{}\begin{matrix}xy=2\\xy=-3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=\frac{2}{x}\\y=-\frac{3}{x}\end{matrix}\right.\)

+ \(\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\Leftrightarrow\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2-12=0\)

\(\Leftrightarrow\left(\frac{x}{y}-2\right)\left[\left(\frac{x}{y}\right)^2+\frac{3x}{y}+6\right]=12\)

\(\Leftrightarrow\frac{x}{y}-2=0\) ( do \(\left(\frac{x}{y}\right)^2+\frac{3x}{y}+6>0\forall y\ne0\) )

\(\Leftrightarrow\frac{x}{y}=2\)

Xét 2 TH là được

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
PQ
Xem chi tiết
KA
Xem chi tiết
KZ
Xem chi tiết
LN
Xem chi tiết
ML
Xem chi tiết
NM
Xem chi tiết
KZ
Xem chi tiết
TT
Xem chi tiết