Ôn thi vào 10

LB

Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3x}+\dfrac{10}{y}=1\end{matrix}\right.\)

(mink đag cần gấp)

H24
7 tháng 6 2021 lúc 20:36

$\begin{cases}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac16\\\dfrac{10}{3x}+\dfrac{10}{y}=1\\\end{cases}$

`<=>` $\begin{cases}\dfrac{10}{x}+\dfrac{10}{y}=\dfrac53\\\dfrac{10}{3x}+\dfrac{10}{y}=1\\\end{cases}$

`<=>` $\begin{cases}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac16\\\dfrac{20}{3}x=\dfrac23\\\end{cases}$

`<=>` $\begin{cases}x=\dfrac{1}{10}\\y=\dfrac{1}{15}\\\end{cases}$

Vậy `(x,y)=(1/10,1/15)`

Bình luận (0)
AT
7 tháng 6 2021 lúc 20:38

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3x}+\dfrac{10}{y}=1\end{matrix}\right.\left(x,y\ne0\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3}.\dfrac{1}{x}+10.\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{10}{x}+\dfrac{10}{y}=\dfrac{5}{3}\left(1\right)\\\dfrac{10}{3}.\dfrac{1}{x}+\dfrac{10}{y}=1\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)-\left(2\right)\Rightarrow\dfrac{20}{3}.\dfrac{1}{x}=\dfrac{2}{3}\Rightarrow\dfrac{1}{x}=\dfrac{1}{10}\Rightarrow x=10\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{1}{6}-\dfrac{1}{10}=\dfrac{1}{15}\Rightarrow y=15\)

 

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
PP
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
UI
Xem chi tiết