Violympic toán 9

TT

Giải hệ phương trình: \(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{matrix}\right.\)

PA
17 tháng 2 2018 lúc 20:01

\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)^3-18xy\left(2xy+3\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{y^2}{2x}\right)^3-18xy\times\dfrac{y^2}{2x}=18y^3\left(2\right)\\2xy+3=\dfrac{y^2}{2x}\end{matrix}\right.\)

Ta có: \(\left(2\right)\Leftrightarrow y^3\left(\dfrac{y^3}{8x^3}-27\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\left(\text{loại}\right)\\y^3=216x^3\end{matrix}\right.\)

\(\Rightarrow y=6x\). Thay vào (2)

\(\Rightarrow24x^3+6x=36x^2\)

\(\Leftrightarrow6x\left(4x^2-6x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(\text{loại}\right)\\x=\dfrac{3+\sqrt{5}}{4}\left(\text{nhận}\right)\\x=\dfrac{3-\sqrt{5}}{4}\left(\text{nhận}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{9+3\sqrt{5}}{2}\\y=\dfrac{9-3\sqrt{5}}{2}\end{matrix}\right.\left(\text{nhận}\right)\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\dfrac{3+\sqrt{5}}{4};\dfrac{9+3\sqrt{5}}{2}\right);\left(\dfrac{3-\sqrt{5}}{4};\dfrac{9-3\sqrt{5}}{2}\right)\)

Bình luận (0)

Các câu hỏi tương tự
LS
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
CG
Xem chi tiết
CG
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
CG
Xem chi tiết