Violympic toán 9

KC

Giải hệ phương trình

\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{4-2y}+\sqrt{5+2y-\left(x-1\right)^2}=5\\5x^4+\left(x-y\right)^2=\left(10x^3+y\right)y\end{cases}}\)

NL
14 tháng 3 2020 lúc 17:14

ĐKXĐ: ...

\(5x^4+x^2-2xy+y^2=10x^3y+y^2\)

\(\Leftrightarrow5x^4-10x^3y+x^2-2xy=0\)

\(\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\)

\(\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2y\end{matrix}\right.\)

TH1: \(x=0\) đơn giản bạn tự giải

TH2: \(x=2y\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}+\sqrt{5+x-\left(x-1\right)^2}=5\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}+\sqrt{-x^2+3x+4}=5\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=t>0\)

\(\Rightarrow\sqrt{-x^2+3x+4}=t^2-5\)

Phương trình trở thành:

\(t+t^2-5=5\Leftrightarrow t^2+t-10=0\) \(\Rightarrow t=\frac{-1+\sqrt{41}}{2}\)

\(\Leftrightarrow\sqrt{-x^2+3x+4}=t^2-5=\frac{11-\sqrt{41}}{2}\)

\(\Leftrightarrow-x^2+3x+4=\frac{81-11\sqrt{41}}{2}\)

Pt xấu quá, bạn tự chuyển vế bấm máy

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HT
Xem chi tiết
LM
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết
KN
Xem chi tiết
AM
Xem chi tiết
LQ
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết