Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

HG

Giải hệ phương trình:

a) \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{-3}{2}\\\dfrac{5}{x}-\dfrac{2}{y}=\dfrac{8}{3}\end{matrix}\right.\)

b)\(\left\{{}\begin{matrix}\dfrac{2}{x+y-1}-\dfrac{4}{x-y+1}=\dfrac{-14}{5}\\\dfrac{3}{x+y-1}+\dfrac{2}{x-y+1}=\dfrac{-13}{5}\end{matrix}\right.\)

NT
29 tháng 5 2022 lúc 13:28

a: Đặt 1/x=a; 1/y=b

Hệ phương trình trở thành:

\(\left\{{}\begin{matrix}3a+5b=-\dfrac{3}{2}\\5a-2b=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}\\\dfrac{1}{y}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

b: Đặt \(\dfrac{1}{x+y-1}=a;\dfrac{1}{x-y+1}=b\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a-4b=\dfrac{-14}{5}\\3a+2b=-\dfrac{13}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-1=-1\\x-y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
CT
Xem chi tiết
LN
Xem chi tiết
DA
Xem chi tiết
MV
Xem chi tiết
SK
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
TN
Xem chi tiết