Violympic toán 8

N8

GIẢI GIÙM MÌNH BÀI NÀY VỚI !!!

Giải phương trình :

\(\frac{2x+3}{2x+1}-\frac{2x+5}{2x+7}=1-\frac{6x^2+9x-9}{\left(2x+1\right)\left(2x+7\right)}\)

NT
15 tháng 3 2020 lúc 7:32

Điều kiện: \(x \ne -\dfrac{1}{2}\)\(x \ne -\dfrac{7}{2}\)

\(\begin{array}{l} \dfrac{{\left( {2x + 3} \right)\left( {2x + 7} \right)}}{{\left( {2x + 1} \right)\left( {2x + 7} \right)}} - \dfrac{{\left( {2x + 5} \right)\left( {2x + 1} \right)}}{{\left( {2x + 7} \right)\left( {2x + 1} \right)}} = \dfrac{{\left( {2x + 7} \right)\left( {2x + 1} \right)}}{{\left( {2x + 7} \right)\left( {2x + 1} \right)}} - \dfrac{{6{x^2} + 9x - 9}}{{\left( {2x + 7} \right)\left( {2x + 1} \right)}}\\ \Leftrightarrow \dfrac{{4{x^2} + 20x + 21 - 4{x^2} - 12x - 5}}{{\left( {2x + 7} \right)\left( {2x + 1} \right)}} = \dfrac{{4{x^2} + 16x + 7 - 6{x^2} - 9x + 9}}{{\left( {2x + 7} \right)\left( {2x + 1} \right)}}\\ \Leftrightarrow \dfrac{{8x + 16}}{{\left( {2x + 7} \right)\left( {2x + 1} \right)}} = \dfrac{{ - 2{x^2} + 7x + 16}}{{\left( {2x + 7} \right)\left( {2x + 1} \right)}}\\ \Rightarrow 8x + 16 = - 2{x^2} + 7x + 16 \Leftrightarrow 2{x^2} + x = 0 \Leftrightarrow x\left( {2x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0 \text{(nhận)}\\ x = - \dfrac{1}{2} \text{(loại)} \end{array} \right. \end{array}\)

Vậy phương trình có nghiệm duy nhất $x=0$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
HT
Xem chi tiết
MM
Xem chi tiết
TM
Xem chi tiết
TN
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
CV
Xem chi tiết