Violympic toán 9

BB

Giải các phương trình sau: \(7x+6\sqrt{x+5}=x^2+30\)

LL
2 tháng 10 2021 lúc 20:09

\(7x+6\sqrt{x+5}=x^2+30\left(đk:x\ge-5\right)\)

\(\Leftrightarrow6\sqrt{x+5}=x^2-7x+30\)

Ta thấy 2 vế đều dương nên bình phương lên ta được:

\(36x+180=x^4+49x^2+900-14x^3+60x^2-420x\)

\(\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)

\(\Leftrightarrow x^3\left(x-4\right)-10x^2\left(x-4\right)+69x\left(x-4\right)-180\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-4\right)-6x\left(x-4\right)+45\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)

\(\Leftrightarrow x=4\left(tm\right)\) (do \(x^2-6x+45=\left(x^2-6x+9\right)+36=\left(x-3\right)^2+36\ge36>0\))

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
TT
Xem chi tiết
BB
Xem chi tiết
DD
Xem chi tiết
NN
Xem chi tiết
KN
Xem chi tiết
HH
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết