a/ \(xy+1=x^2+y\Leftrightarrow x^2-1-xy+y=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-y\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1-y\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\y=x+1\end{matrix}\right.\)
- Với \(x=1\Rightarrow y^2+6y-8=0\Rightarrow...\)
- Với \(y=x+1\)
\(\Rightarrow\left(x^2-6x+6\right)x^2+6x+1=0\)
\(\Leftrightarrow x^4-6x^3+6x^2+6x+1=0\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}-6\left(x-\frac{1}{x}\right)+6=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
\(\Rightarrow t^2+2-6t+6=0\Leftrightarrow t^2-6t+8=0\Leftrightarrow...\)
2/
Cộng vế với vế:
\(\Rightarrow2x^2+xy-3x-y+1=0\)
\(\Leftrightarrow\left(2x^2-3x+1\right)+y\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)+y\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x+y=1\end{matrix}\right.\)
TH1: \(x=1\Rightarrow y^2-y=0\Rightarrow...\)
Th2: \(y=1-2x\)
\(\Rightarrow x^2-x\left(1-2x\right)+\left(1-2x\right)^2=1\)
\(\Leftrightarrow...\)