a) <=>
<=>
<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0
<=> 20x + 11 < 0
<=> 20x < - 11
<=> x <
b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5
<=> 0x ≤ -6.
Vô nghiệm.
a) <=>
<=>
<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0
<=> 20x + 11 < 0
<=> 20x < - 11
<=> x <
b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5
<=> 0x ≤ -6.
Vô nghiệm.
Giải các hệ bất phương trình sau :
a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{3x+1}{2}-\dfrac{3-x}{3}\le\dfrac{x+1}{4}-\dfrac{2x-1}{3}\\3-\dfrac{2x+1}{5}>x+\dfrac{4}{3}\end{matrix}\right.\)
Bài 1. Giải các bất phương trình sau 1) \(\dfrac{2x-1}{x+1}-2< 0\) 2) \(\dfrac{x^2-2x+5}{x-2}-x+1\ge0\)
3) \(\dfrac{\left(1+2x\right)\left(x-3\right)}{\left(2x+3\right)\left(1-x\right)}\le0\) 4) \(\left|2x-3\right|>5\) 5)\(\left|1-2x\right|\le4\)
6) \(\left|3x+1\right|>x-2\)
Giải các hệ bất phương trình :
a. \(\left\{{}\begin{matrix}6x+\dfrac{5}{7}< 4x+7\\\dfrac{8x+3}{2}< 2x+5\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}15x-2>2x+\dfrac{1}{3}\\2\left(x-4\right)< \dfrac{3x-14}{2}\end{matrix}\right.\)
giải các bất phương trình sau:
4) \(\left|2x-3\right|>5\) 5) \(\left|1-2x\right|\le4\) 6) \(\left|3x+1\right|>x-2\)
giải các bất phương trình sau:
1) \(\left|2x-3\right|>5\) 2) \(\left|1-2x\right|\le4\) 3) \(\left|3x+1\right|>x-2\)
Giải bất phương trình sau:
\(\dfrac{\left(6-2x\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(2-x\right)^2}\le0\)
Tìm các giá trị x thỏa mãn điều kiện của mỗi bất phương trình sau :
a. \(\dfrac{1}{x}< 1-\dfrac{1}{x+1}\)
b. \(\dfrac{1}{x^2-4}\le\dfrac{2x}{x^2-4x+3}\)
c. \(2\left|x\right|-1+\sqrt[3]{x-1}< \dfrac{2x}{x+1}\)
d. \(2\sqrt{1-x}>3x+\dfrac{1}{x+4}\)
Giải bất phương trình sau:
a) \(2x^2-3x+2\le\sqrt{3x-2}\)
b) \(3\left(2x^2-x\sqrt{x^2+3}\right)< 2\left(1-x^4\right)\)
Giải bất phương trình:
\(\dfrac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\dfrac{1}{x-2}\)