Ta có \(\left(x^2+x\right)-\left(x^2-x\right)=2x\Rightarrow x^2+x=\left(x^2-x\right)+2x\)
Do đó bất phương trình
\(\Leftrightarrow2^{x^2-x}.2^{2x}+4.2^{x^2-x}-2^{2x}-4\ge0\)
\(\Leftrightarrow2^{x^2-x}\left(2^{2x}+4\right)-\left(2^{2x}+4\right)\ge0\)
\(\Leftrightarrow\left(2^{2x}+4\right)\left(2^{x^2-x}-1\right)\ge0\)
\(\Leftrightarrow2^{x^2-x}\ge1\)
\(\Leftrightarrow x^2-x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge1\\x\le0\end{array}\right.\)
Vậy bất phương trình có tập nghiệm là S = (\(-\infty;0\)] \(\cup\) [\(1;+\infty\))