Đại số lớp 7

GV

Giả sử có 2015 số \(Z^+\) a1, a2, ... , a2015 thỏa mãn:

\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}=1008\)

CMR: Cs ít nhất 2 trong 2015 số \(Z^+\) đã cho bằng nhau.

ND
24 tháng 7 2018 lúc 9:29

Giả sử trong 2015 số nguyên dương a1, a2, ... , a2015 thỏa mãn :

\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}=1008\)và không có số nào bằng nhau.Ta có :

\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}\le\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2015}\)

\(\Rightarrow\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}< \dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1007=1008\)

(mâu thuẫn)

⇒Điều giả sử sai ⇒ có ít nhất 2 trong 2015 số nguyên dương đã cho

bằng nhau.

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
TM
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
VT
Xem chi tiết
TT
Xem chi tiết
LL
Xem chi tiết
TN
Xem chi tiết
NG
Xem chi tiết