Đại số lớp 7

NL

Chứng minh rằng nếu \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_n}{a_{n+1}}\) thì \(\left(\dfrac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\right)^n=\dfrac{a_1}{a_{n+1}}\)

LB
8 tháng 8 2017 lúc 20:00

Theo tính chất của dãy tỉ số bằng nha, ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

.................................

\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)

Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)

~ Học tốt ~

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết
KK
Xem chi tiết
TM
Xem chi tiết
LL
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết