Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

TC

GHPT: \(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\end{matrix}\right.\)

HQ
18 tháng 2 2021 lúc 8:25

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

\(\xrightarrow[\left(1\right)-\left(2\right)]{\left(1\right)+\left(2\right)}\left\{{}\begin{matrix}2\left(\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}\right)=20\left(3\right)\\2\left(x+y\right)=16\Rightarrow x=8-y\left(4\right)\end{matrix}\right.\) 

Thay (4) vào (3) và thu gọn ta được: \(\left(\sqrt{x^2+9}+\sqrt{y^2+9}\right)=10\left(5\right)\)  

Kết hợp (4) và (5): \(\left\{{}\begin{matrix}x=8-y\\\sqrt{x^2+9}+\sqrt{y^2+9}=10\end{matrix}\right.\) rồi giải nốt :D good luck

 

 

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
TC
Xem chi tiết
TM
Xem chi tiết
TN
Xem chi tiết
DV
Xem chi tiết
TC
Xem chi tiết
DV
Xem chi tiết
KR
Xem chi tiết
PT
Xem chi tiết