Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

TC

GHPT: \(\left\{{}\begin{matrix}x+\sqrt{x^2+2x+2}=\sqrt{y^2+1}-y-1\\x^3-\left(3x^2+2y-6\right)\sqrt{2x^2-y-2}=0\end{matrix}\right.\)

NL
5 tháng 2 2021 lúc 17:47

Từ pt thứ nhất: \(\Leftrightarrow x+1+\sqrt{\left(x+1\right)^2+1}=\left(-y\right)+\sqrt{\left(-y\right)^2+1}\)

Xét hàm \(f\left(t\right)=t+\sqrt{t^2+1}\Rightarrow f'\left(t\right)=1+\dfrac{t}{\sqrt{t^2+1}}=\dfrac{t+\sqrt{t^2+1}}{\sqrt{t^2+1}}\)

\(f'\left(t\right)>\dfrac{t+\sqrt{t^2}}{\sqrt{t^2+1}}=\dfrac{t+\left|t\right|}{\sqrt{t^2+1}}\ge0\Rightarrow f'\left(t\right)>0\) ; \(\forall t\)

\(\Rightarrow f\left(t\right)\) đồng biến trên R

\(\Rightarrow x+1=-y\Rightarrow y=-x-1\)

Thế xuống pt dưới:

\(x^3-\left(3x^2-2x-8\right)\sqrt{2x^2+x-1}=0\)

Bạn coi lại đề, pt vô tỉ này ko giải được

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
DV
Xem chi tiết
KR
Xem chi tiết
TN
Xem chi tiết
NL
Xem chi tiết
DV
Xem chi tiết
KR
Xem chi tiết
AL
Xem chi tiết
KR
Xem chi tiết