Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

TC

GHPT sau: 

          \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x+2}}+\dfrac{1}{\sqrt{y-1}}=\dfrac{2}{\sqrt{x+y}}\\x^2+y^2+4xy-4x+2y-5=0\end{matrix}\right.\)

NT
20 tháng 2 2021 lúc 14:15

Điều kiện: \(\left\{ \begin{array}{l} x > - 2\\ y > 1\\ x + y > 0 \end{array} \right.\)

Hệ phương trình tương đương: \(\left\{ \begin{array}{l} \sqrt {\dfrac{{x + y}}{{x + 2}}} + \sqrt {\dfrac{{x + y}}{{y - 1}}} = 2\\ {\left( {\dfrac{{x + 2}}{{x + y}}} \right)^2} + \left( {\dfrac{{y - 1}}{{x + y}}} \right)^2 = 2 \end{array} \right.\). Đặt \(\left\{ \begin{array}{l} a = \sqrt {\dfrac{{x + y}}{{x + 2}}} \\ b = \sqrt {\dfrac{{x + y}}{{y - 1}}} \end{array} \right.\) (với \(a,b > 0\))

Ta có hệ phương trình: \(\left\{ \begin{array}{l} a + b = 2\\ \dfrac{1}{{{a^4}}} + \dfrac{1}{{{b^4}}} = 2 \end{array} \right.\left( * \right)\)

Áp dụng BĐT AM - GM, ta có:

\(\begin{array}{l} 2 = a + b \geqslant 2\sqrt {ab} \Rightarrow ab \leqslant 1\\ 2 = \dfrac{1}{{{a^4}}} + \dfrac{1}{{{b^4}}} \geqslant 2\sqrt {\dfrac{1}{{{a^4}}}.\dfrac{1}{{{b^4}}}} \Rightarrow ab \geqslant 1 \end{array}\)

Thế nên \(\left( * \right) \Leftrightarrow a = b = 1\)

Ta lại có hệ phương trình: \(\left\{ \begin{array}{l} \dfrac{{x + y}}{{x + 2}} = 1\\ \dfrac{{x + y}}{{y - 1}} = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - 1\\ y = 2 \end{array} \right.\)

Vậy hệ phương trình có nghiệm là \((-1;2)\)

Bình luận (0)
GD
20 tháng 2 2021 lúc 14:20

Đk: \(\left\{{}\begin{matrix}x>-2\\y>1\\x+y>0\end{matrix}\right.\)

hpt\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\2\left(x+y\right)^2=\left(x+2\right)^2+\left(y-1\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\\left(\dfrac{x+2}{x+y}\right)^2+\left(\dfrac{y-1}{x+y}\right)^2=2\end{matrix}\right.\)

Đặt \(a=\sqrt{\dfrac{x+y}{x+2}},b=\sqrt{\dfrac{x+y}{y-1}}\left(a,b>0\right)\)

Ta có hệ: \(\left\{{}\begin{matrix}a+b=2\\\dfrac{1}{a^4}+\dfrac{1}{b^4}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^4+b^4=2a^4b^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2=2a^4b^4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left(4-2ab\right)^2-2a^2b^2=2a^4b^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^4b^4=a^2b^2-8ab+8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^2b^2\left(a^2b^2-1\right)+8\left(ab-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left(ab-1\right)\left[a^2b^2\left(ab+1\right)+8\right]=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\ab-1\end{matrix}\right.\left(a,b>0\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}=1\\\sqrt{\dfrac{x+y}{y-1}}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=x+2\\x+y=y-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
TC
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
TM
Xem chi tiết
TC
Xem chi tiết
TN
Xem chi tiết
TC
Xem chi tiết
KR
Xem chi tiết