Lần sau đăng câu hỏi bạn nhớ ghi đầu đủ giả thiết để người khác còn biết mà làm ạ.
Đề: Cho \(a,b\ne0\) Chứng minh rằng:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-3\left(\frac{a}{b}+\frac{b}{a}\right)+4\ge0\)
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-3\left(\frac{a}{b}+\frac{b}{a}\right)+4=\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\right)-2\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)+2\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)^2-2\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)+2\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)-\left(\frac{a}{b}+\frac{b}{a}-2\right)\)
\(=\left(\frac{a}{b}+\frac{b}{a}-2\right)\left(\frac{a}{b}+\frac{b}{a}-1\right)\)
\(=\frac{a^2+b^2-2ab}{ab}.\frac{a^2+b^2-ab}{ab}\)
\(=\frac{\left(a+b\right)^2.\left[\left(a-\frac{b}{2}\right)^2+\frac{3}{4}b^2\right]}{a^2b^2}\ge0\)