1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Giải các phương trình sau :
a, \(\left(6x+8\right)\left(6x+6\right)\left(6x+7\right)^2=72\)
b,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
Giải PT:
a/ \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{9x}{x^2-7x+10}=10\)
b/ \(\left(x-7\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)=72\)
Bài 3: Giải các phương trình sau bằng cách đưa về dạng ax+b =0 :
a) \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
b) \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
d) \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
Bài 1: Giải phương trình:
a, \(\frac{5x-1}{3}+\frac{7x-1,1}{3}-\frac{1,5-5x}{7}=\frac{9x-0,7}{4}\)
Bài 2: Giải các phương trình sau bằng cách đưa về phương trình tích:
a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
d, \(x^3-5x^2+6x=0\)
e, \(2x^3+3x^2-32x=48\)
tính giá trị của các biểu thức sau:
a,\(\frac{9x^5-xy^4-18x^4y+2y^5}{3x^3y^2+xy^4-6x^2y^3-2y^5}\)biết x,y≠0,x≠2y và \(\frac{x}{y}=\frac{2}{3}\)
b,\(\frac{x^2+4y^2-4x\left(y+1\right)+8y-21}{\left(7+2y-x\right)^2-\left(7+2y-x\right)\left(2x+1-4y\right)}\)biết y≠\(\frac{1}{7},\)2y≠-7, 2y-x≠-2 và \(\frac{7x}{7y-1}=2\)
Giaỉ các phương trình sau:
a) \(\left(x^2+11x+12\right)\left(x^2+9x+20\right)\left(x^2+13x+42\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
b) \(20\left(\frac{x-2}{x+1}\right)^2-5\left(\frac{x+2}{x-1}\right)^2+48\cdot\frac{x^2-4}{x^2-1}=0\)