Ôn tập toán 7

HP

Đinh Tuấn Việt chỉ giỏi khoác lác thôi,giỏi thì làm bài này đi:

Tìm x;y;z;t là các số nguyên dương thỏa mãn: \(5\left(x+y+z+t\right)+15=2xyzt\)
 

NA
18 tháng 6 2016 lúc 21:07

tham khảo :Tìm nghiệm nguyên dương của phương trình sau : 5(x+y+z+t)+10=2xyzt
vì vai trò x,y,z,t như nhau nên \(x\ge y\ge z\ge t\)

 khi đó 2xyzt=5(x+y+z+t)+10\(\le\)20x+10

⇒yzt\(\le\)15⇒t3\(\le\)15⇒t\(\le\)2Với t = 1 ta có : 2xyz = 5(x + y + z) +15 ≤ 15x + 15 ⇒2yz\(\le\)30⇒2z2\(\le\)30⇒z\(\le\)3Nếu z = 1 thì 2xy = 5(x + y) + 20 hay 4xy = 10(x + y) + 40 hay (2x – 5)(2y – 5) = 65 .

Dễ thấy rằng phương trình này có nghiệm là (x = 35; y = 3) và (x = 9; y = 5).

Giải tương tự cho các trường còn lại và trường hợp t=2. Cuối cùng ta tìm được nghiệm nguyên dương của phương trình đã cho là (x;y;z;t)=(35;3;1;1);(9;5;1;1) và các hoán vị của các bộ số này.


 

Bình luận (0)
D3
18 tháng 6 2016 lúc 21:37

cãi nhau à>

Bình luận (5)
HP
19 tháng 6 2016 lúc 7:39

Ơ, thầy phynit có nhầm lẫn ko vậy, trong đề là 15 mà?

Bình luận (5)

Các câu hỏi tương tự
CC
Xem chi tiết
LC
Xem chi tiết
BO
Xem chi tiết
TG
Xem chi tiết
TH
Xem chi tiết
DP
Xem chi tiết
KH
Xem chi tiết
TT
Xem chi tiết
HA
Xem chi tiết