\(\dfrac{x^2-xy}{6y^2-6xy}=\dfrac{x\left(x-y\right)}{-6y\left(x-y\right)}=-\dfrac{x}{6y}\)
\(\dfrac{x^2-xy}{6y^2-6xy}=\dfrac{x\left(x-y\right)}{-6y\left(x-y\right)}=-\dfrac{x}{6y}\)
rút gọn phân thức sau đây :
a) \(\dfrac{x^4-3x^2+1}{x^4-x^2-2x-1}\)
b) \(\dfrac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)
Dùng tính chất cơ bảm của phân thức, hãy điền một đa thức thích hợp vào các chỗ trống trong mỗi đẳng thức sau :
a) \(\dfrac{x-x^2}{5x^2-5}=\dfrac{x}{.........}\)
b) \(\dfrac{x^2+8}{2x-1}=\dfrac{3x^3+25x}{..........}\)
c) \(\dfrac{............}{x-y}=\dfrac{3x^2-3xy}{3\left(y-x\right)^2}\)
d) \(\dfrac{-x^2+2xy-y^2}{x+y}=\dfrac{.........}{y^2-x^2}\)
Hãy điền vào ô trống một đa thức thích hợp để được đẳng thức:
a) \(\dfrac{x+5}{3x-2}=\dfrac{...}{x\left(3x-2\right)}\) b) \(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right)...}{8x+4}\)
c) \(\dfrac{2x\left(...\right)}{x^{2^{ }}-4x+4}=\dfrac{2x}{x-2}\) d) \(\dfrac{5x^2+10x}{\left(x-2\right)}=\dfrac{5x}{x-2}\)
Hãy điền vào chỗ trống một đa thức thích hợp để được đẳng thức :
a) \(\dfrac{x+5}{3x-2}=\dfrac{.......}{x\left(3x-2\right)}\)
b) \(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right).....}{8x+4}\)
c) \(\dfrac{2x\left(......\right)}{x^2-4x+4}=\dfrac{2x}{x-2}\)
d) \(\dfrac{5x^2+10x}{\left(x-2\right)......}=\dfrac{5x}{x-2}\)
\(\dfrac{x}{x+4}\)+\(\dfrac{4}{x-4}\)-\(\dfrac{32}{x^2-16}\)
cho x,y,z≠0 và \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}\)=a2+b2+c2
chứng minh rằng \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Tìm H:
a,\(\dfrac{H}{x^2+9x+14}\)= \(\dfrac{1-x}{x+2}\)
b,\(\dfrac{2x^2-5x+2}{x^2+5x-14}\)=\(\dfrac{2x-1}{H}\)
Điền đa thức thích hợp vào mỗi chỗ trống trong các đẳng thức sau :
a) \(\dfrac{x^3+x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{.....}{x-1}\)
b) \(\dfrac{5\left(x+y\right)}{2}=\dfrac{5x^2-5y^2}{.........}\)
Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng mẫu thức :
a) \(\dfrac{3x}{x-5}\) và \(\dfrac{7x+2}{5-x}\)
b) \(\dfrac{4x}{x+1}\) và \(\dfrac{3x}{x-1}\)
c) \(\dfrac{2}{x^2+8x+16}\) và \(\dfrac{x-4}{2x+8}\)
d) \(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\) và \(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)