Bài 5: Phép cộng các phân thức đại số

HH

\(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

H24
14 tháng 11 2018 lúc 20:27

\(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=2x\left(\dfrac{1}{x^2-y^2}+\dfrac{1}{x^2+y^2}\right)+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=4x^3\left(\dfrac{1}{x^4-y^4}+\dfrac{1}{x^4+y^4}\right)+\dfrac{8x^7}{x^8+y^8}=8x^7\left(\dfrac{1}{x^8-x^8}+\dfrac{1}{x^8+y^8}\right)=\dfrac{16x^{15}}{x^{16}-y^{16}}\)

Bình luận (0)
NL
14 tháng 11 2018 lúc 20:28

\(=\dfrac{x+y+x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{2x}{x^2-y^2}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=2x\left(\dfrac{1}{x^2-y^2}+\dfrac{1}{x^2+y^2}\right)+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{4x^3}{x^4-y^4}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=4x^3\left(\dfrac{1}{x^4-y^4}+\dfrac{1}{x^4+y^4}\right)+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{8x^7}{x^8-y^8}+\dfrac{8x^7}{x^8+y^8}=8x^7\left(\dfrac{1}{x^8-y^8}+\dfrac{1}{x^8+y^8}\right)\)

\(=\dfrac{16x^{15}}{x^{16}-y^{16}}\)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
AN
Xem chi tiết
AN
Xem chi tiết
TM
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
NP
Xem chi tiết
VN
Xem chi tiết