Bình phương hai vế ta được : \(\dfrac{1}{4x-8}\)= 4
<=> 4x - 8 = \(\dfrac{1}{4}\)
<=> 4x = \(\dfrac{33}{4}\)
<=> x = \(\dfrac{33}{16}\)
Bình phương hai vế ta được : \(\dfrac{1}{4x-8}\)= 4
<=> 4x - 8 = \(\dfrac{1}{4}\)
<=> 4x = \(\dfrac{33}{4}\)
<=> x = \(\dfrac{33}{16}\)
1.thực hiện phép tính: \(\left(3\sqrt{8}-\sqrt{18}+5\sqrt{\dfrac{1}{2}}+\sqrt{50}\right).3\sqrt{2}\)
2.giải pt:\(\sqrt{4x^2-4x+1}-5=2\)
Rút gọn biểu thức: \(A=\left(\dfrac{4x+4}{2\sqrt{2x^3}-8}-\dfrac{\sqrt{2x}}{2x+2\sqrt{2x}+4}\right)\left(\dfrac{1+2\sqrt{2x^3}}{1+\sqrt{2x}}\right)\)
A=\(1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
Rút gọn biểu thức trên
Giải pt:
\(\dfrac{6x^2+4x+8}{x+1}=5\sqrt{2x^2+3}\)
\(\dfrac{1}{\sqrt{4x-8}}=2\)
Rút gọn biểu thức: \(\sqrt{4x-2\sqrt{4x-1}}+\sqrt{4x+2\sqrt{4x-1}}\) khi \(x\ge\dfrac{1}{4}\)
Giải phương trình:
1, \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
2, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{16x-4x^2-15}\)
3, \(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
Cho x=\(\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính A=(4x5+4x4-x3+1)19+\(\sqrt{4x^5+4x^4-5x^3+5x}\)+\(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2019}\)
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)