Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R). Điểm M di động trên đường tròn (O;R). Gọi D và E lần lượt là hình chiếu của điểm M lên các đường thẳng AB và AC. CMR: ΔMBC∼ΔMDE
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R). Điểm M di động trên đường tròn (O;R). Gọi D và E lần lượt là hình chiếu của điểm M lên các đường thẳng AB và AC. CMR: \(\Delta MBC\sim\Delta MDE\)
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn.
Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt
đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây
CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
helllpppppppppppp mmmmmmmmmmmmmmmiiiiiiiiiiiiii
từ điểm a nằm ngoài đường tròn (o,r) vẽ các tiếp tuyến ab,ac(b,c là tiếp điểm) cát tuyến amn của (o,r) chứng minh
a,tứ giác aboc nội tiếp xác định tâm o' và bán kính của đường tròn đi qua 4 điểm a,b,o,c
b,ab^2=am.an
c,gọi i là trung điểm của mn chứng minh ia là phân giác góc bic
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2
Cho ΔABC đều nội tiếp đường teonf(O,R). Đường thẳng vuông góc với AC tại A cắt (O) tại D. Tiếp tuyến tại C cắt AD tại E. Gọi M là trung điểm CE, F là giao điểm AC và BD. CMinh
a) AM là tiếp tuyến của (O)
b)3 điểm C,O,D thẳng hàng
c) BC//EF
d) EA.ED=CF2
\(\Delta\)ABC nội tiếp (O;R) ,R=1. Có AD ,AE là các đường phân giác trong , ngoài (O,E \(\in\)BC) của \(\Delta\) ABC. Giả sử AD=AE
Tính : a, AB2+AC2
b, Độ dài đoạn thẳng AD khi SABC lớn nhất