Chương II : Tam giác

H24

Đề 14 bài 5. Cho tam giác BCD nhọn có BC = BD, K là trung điểm của CD. Từ K kẻ KE vuông góc với BC tại E, KF vuông góc với BD tại F.
a. Chứng minh: tam giác BCK = tam giác BDK.
b. Chứng minh: tam giác BKE = tam giác BKF.
c. Gọi M là giao điểm của đường thẳng BC và đường thẳng KF, N là giao điểm của đường thẳng BD và đường thẳng KE. Chứng minh: ME = NF, MF = NE.
d. Chứng minh: EF // MN.

NT
25 tháng 12 2023 lúc 13:22

a: Xét ΔBCK và ΔBDK có

BC=BD

CK=DK

BK chung

Do đó: ΔBCK=ΔBDK

b: Ta có; ΔBCK=ΔBDK

=>\(\widehat{CBK}=\widehat{DBK}\)

Xét ΔBEK vuông tại E và ΔBFK vuông tại F có

BK chung

\(\widehat{EBK}=\widehat{FBK}\)

Do đó: ΔBEK=ΔBFK

c: Ta có: ΔBEK=ΔBFK

=>EK=FK

Xét ΔKEM vuông tại E và ΔKFN vuông tại F có

KE=KF

\(\widehat{EKM}=\widehat{FKN}\)(hai góc đối đỉnh)

Do đó: ΔKEM=ΔKFN

=>ME=FN và KM=KN

Ta có: EK+KN=EN

KF+KM=FM

mà EK=KF

và KN=KM

nên EN=FM

d:

Ta có: ΔBEK=ΔBFK

=>BE=BF

Xét ΔBMN có \(\dfrac{BE}{EM}=\dfrac{BF}{FN}\)

nên EF//MN

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
I7
Xem chi tiết
NP
Xem chi tiết
QT
Xem chi tiết
NC
Xem chi tiết
TM
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết