Chương II : Tam giác

NN

Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC (E ϵ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng:

a) ΔABD = ΔEBD 

b) ΔABE là tam giác cân

c) DF = DC

NT
20 tháng 2 2021 lúc 21:40

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(Hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

c) Ta có: ΔABD=ΔEBD(cmt)

nên DA=DE(hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
PP
Xem chi tiết
NN
Xem chi tiết
QT
Xem chi tiết
I7
Xem chi tiết
NK
Xem chi tiết
NP
Xem chi tiết
NC
Xem chi tiết
PC
Xem chi tiết