ĐKXĐ: ...
Đặt \(cosx-\frac{1}{cosx}=a\Rightarrow cos^2x+\frac{1}{cos^2x}=a^2+2\)
Pt trở thành:
\(a^2+2+a-\frac{7}{4}=0\)
\(\Leftrightarrow4a^2+4a+1=0\Leftrightarrow\left(2a+1\right)^2=0\)
\(\Rightarrow a=-\frac{1}{2}\Rightarrow cosx-\frac{1}{cosx}=-\frac{1}{2}\)
\(\Leftrightarrow2cos^2x+cosx-2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{17}-1}{4}\\cosx=\frac{-\sqrt{17}-1}{4}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm arccos\left(\frac{\sqrt{17}-1}{4}\right)+k2\pi\)