Ta có: \(S=5+5^2+5^3+...+5^{2012}\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2007}+5^{2010}\right)+5^{2011}+5^{2012}\)
\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{2007}.\left(1+5^3\right)+5^{2011}+5^{2012}\)
\(=5.126+5^2.126+...+5^{2017}.126+6+5^{2011}+5^{2012}\)
\(=126.\left(5+5^2+...+5^{2007}\right)+5^{2011}+5^{2012}\)
Do \(126.\left(5+5^2+...+5^{2007}\right)⋮126\)
\(5^{2011}+5^{2012}⋮̸126\)
\(\Rightarrow126.\left(5+5^2+...+5^{2007}\right)+5^{2011}+5^{2012}⋮̸126\)
hay \(S⋮̸126\)
Vậy ...
ta có : \(S=5+5^2+5^3+...+5^{2012}\) là các số thuộc dạng \(5;10;15...\)
vậy \(S\) chỉ chia hết cho nhửng số có số đuôi là \(5hoặc0\)
mà \(126\) có số đuôi là \(6\)
\(\Rightarrow\) \(S\) không chia hết cho 126 (đpcm)