Violympic toán 9

TP

Có một số bài bất đẳng thức, bạn nào làm được câu nào cứ làm nhé :)

Câu 1: Cho \(x,y,z>0\)thỏa mãn \(xyz=1\)

Chứng minh rằng : \(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\)

Câu 2: Cho \(a,b,c>0\). Tìm min \(P=\frac{a+3c}{a+2b+c}+\frac{4b}{a+b+2c}-\frac{8c}{a+b+3c}\)

Cây 3: Cho \(a,b,c>-1\). Chứng minh rằng :

\(\frac{1+a^2}{1+b+c^2}+\frac{1+b^2}{1+c+a^2}+\frac{1+c^2}{1+a+b^2}\ge2\)

AH
22 tháng 6 2019 lúc 17:21

Câu 1:

Áp dụng BĐT Cauchy ta có:

\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}=\frac{1}{(x^2+y^2)+(y^2+1)+2}+\frac{1}{(y^2+z^2)+(z^2+1)+2}+\frac{1}{(z^2+x^2)+(x^2+1)+2}\)

\(\leq \frac{1}{2xy+2y+2}+\frac{1}{2yz+2z+2}+\frac{1}{2zx+2x+2}\)

hay \(P\leq \frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)(1)\)

Do $xyz=1$ nên:

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{1}{xy+y+1}+\frac{xy}{xy.yz+xyz+xy}+\frac{y}{yzx+yx+y}\)

\(=\frac{1}{xy+y+1}+\frac{xy}{y+1+xy}+\frac{y}{1+yx+y}=\frac{1+xy+y}{1+xy+y}=1(2)\)

Từ \((1);(2)\Rightarrow P\leq \frac{1}{2}.1=\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$

Bình luận (2)
AH
22 tháng 6 2019 lúc 17:35

Câu 2:

Đặt \((a+2b+c,a+b+2c,a+b+3c)=(x,y,z)\)

\(\Rightarrow \left\{\begin{matrix} c=-y+z\\ b=x-2y+z\\ a=-x+5y-3z\end{matrix}\right.\)

Khi đó, áp dụng BĐT Cauchy ta có:

\(P=\frac{-x+5y-3z-3y+3z}{x}+\frac{4x-8y+4z}{y}-\frac{-8y+8z}{z}\)

\(=-17+\left(\frac{2y}{x}+\frac{4x}{y}\right)+\left(\frac{4z}{y}+\frac{8y}{z}\right)\)

\(\geq -17+2\sqrt{\frac{2y}{x}.\frac{4x}{y}}+2\sqrt{\frac{4z}{y}.\frac{8y}{z}}=-17+12\sqrt{2}\)

Vậy \(P_{\min}=-17+12\sqrt{2}\)

Bình luận (4)
AH
22 tháng 6 2019 lúc 18:21

Câu 3:

Áp dụng BĐT Cauchy:

\(b\leq |b|\leq \frac{b^2+1}{2}\Rightarrow \frac{a^2+1}{1+b+c^2}\geq \frac{a^2+1}{c^2+1+\frac{b^2+1}{2}}\). Tương tự với các phân thức còn lại:

\(\text{VT}=\frac{a^2+1}{1+b+c^2}+\frac{b^2+1}{1+c+a^2}+\frac{c^2+1}{1+a+b^2}\geq \frac{a^2+1}{\frac{b^2+1}{2}+c^2+1}+\frac{b^2+1}{\frac{c^2+1}{2}+a^2+1}+\frac{c^2+1}{\frac{a^2+1}{2}+b^2+1}\)

Đặt \((a^2+1,b^2+1,c^2+1)=(x,y,z)(x,y,z>0)\)

\(\text{VT}\geq \frac{x}{\frac{y}{2}+z}+\frac{y}{\frac{z}{2}+x}+\frac{z}{\frac{x}{2}+y}=2\left(\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\right)(1)\)

Cauchy-Schwarz:

\(\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}=\frac{x^2}{xy+2xz}+\frac{y^2}{yz+2xy}+\frac{z^2}{xz+2yz}\geq \frac{(x+y+z)^2}{3(xy+yz+xz)}\geq \frac{(x+y+z)^2}{(x+y+z)^2}=1(2)\)

Từ \((1);(2)\Rightarrow \text{VT}\geq 2\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết
BB
Xem chi tiết
VH
Xem chi tiết
LQ
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
AJ
Xem chi tiết