Violympic toán 9

HN

cmr:\(\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+....+\dfrac{2011}{1.2.3....2012}< 1\)

AH
19 tháng 10 2018 lúc 22:53

Lời giải:

\(A=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2011}{1.2.3...2012}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{2012-1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2011}-\frac{1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2...2012}< 1\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
HN
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
HC
Xem chi tiết
DF
Xem chi tiết
DT
Xem chi tiết