Violympic toán 9

H24

CMR: \(x=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n-1\right)\cdot2n}{2^n}\) là một số nguyên

NL
13 tháng 3 2019 lúc 23:12

Chỉ chứng minh được với điều kiện \(n\in N\)* (với \(n\) nguyên âm thì hiển nhiên quy luật trên tử số có vấn đề về mặt sắp xếp, \(n+1< n+2\) nhưng \(n+1>2n\) , còn với n không nguyên thì nó chẳng có quy luật nào cho tử số cả, \(n=0\) thì hmmm, tử số ko có quy luật nhưng chắc chắn =0)

Ta sử dụng quy nạp:

- Với \(n=1\Rightarrow x=\frac{2}{2^1}=1\) nguyên (đúng)

- Với \(n=2\Rightarrow x=\frac{3.4}{2^2}=3\) nguyên (đúng)

- Giả sử \(x\) là số nguyên với \(n=k\) tức là:

\(\frac{\left(k+1\right)\left(k+2\right)...\left(2k-1\right)2k}{2^k}\) nguyên

- Ta cần chứng minh \(x\) cũng nguyên với \(n=k+1\)

Thật vậy, khi đó:

\(x=\frac{\left(k+2\right)\left(k+3\right)...\left(2k+1\right)\left(2k+2\right)}{2^{k+1}}=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}.\frac{\left(2k+1\right)\left(2k+2\right)}{2.\left(k+1\right)}\)

\(=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}.\left(2k+1\right)\)

Do \(\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}\) nguyên và \(2k+1\) nguyên

\(\Rightarrow x=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}\left(2k+1\right)\) nguyên (đpcm)

Bình luận (2)
H24
13 tháng 3 2019 lúc 20:16

Nguyễn Việt Lâm, DƯƠNG PHAN KHÁNH DƯƠNG,..

Bình luận (10)

Các câu hỏi tương tự
PT
Xem chi tiết
PT
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
AJ
Xem chi tiết