Ôn tập toán 7

CM

CMR: nếu \(\frac{a}{b}=\frac{c}{d}thì\left(a\right)\frac{5a+3b}{5a-3b}-\frac{5c+3d}{5c-3d}\)

b) \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)

TN
24 tháng 5 2016 lúc 15:11

cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk

a. Vế trái =\(\frac{5a+3b}{5a-3b}\)=\(\frac{5bk+3b}{5bk-3b}\)=\(\frac{b\left(5k+3\right)}{b\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(1)

Vế phải =\(\frac{5c+3d}{5c-3d}\)=\(\frac{5dk+3d}{5dk-3d}\)=\(\frac{d\left(5k+3\right)}{d\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(2)

Từ (1) và (2) ta có\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\)

b. Vế trái=\(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7b^2k^2+3b.k.b}{11b^2.k^2-8b^2}\)=\(\frac{b^2.k\left(7k+3\right)}{b^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(1)

Vế phải =\(\frac{7c^2+3cd}{11c^2-8d^2}\)=\(\frac{7d^2k^2+3d.k.d}{11d^2.k^2-8d^2}\)=\(\frac{d^2.k\left(7k+3\right)}{d^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(2)

Từ (1) và (2) ta có: \(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7c^2+3cd}{11c^2-8d^2}\)

Bình luận (0)
CM
24 tháng 5 2016 lúc 13:21

giups mình với cảm ơn

 

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
NT
Xem chi tiết
CB
Xem chi tiết
VD
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
HH
Xem chi tiết
TL
Xem chi tiết