Violympic toán 9

HL

CMR nếu a+b+c=1 và a.b.c>0 thì ( \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \)) >= 9

DD
27 tháng 8 2018 lúc 20:25

Lớp 9 chưa học cauchy thì làm cách này nha :v

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\)

\(=1+\dfrac{b}{a}+\dfrac{c}{a}+1+\dfrac{a}{b}+\dfrac{c}{b}+1+\dfrac{a}{c}+\dfrac{b}{c}\)

\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge3+2+2+2=9\)

\(-->đpcm\) \("="\) khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)
MP
27 tháng 8 2018 lúc 20:17

áp dụng cauchy-schwarz dạng engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
HN
Xem chi tiết
DF
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
KX
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NY
Xem chi tiết