Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

PD

CMR : \(\left(C^1_{2022}\right)^2-\left(C^2_{2022}\right)^2+\left(C^3_{2022}\right)^2-...+\left(C^{2021}_{2022}\right)^2-\left(C^{2022}_{2022}\right)^2=C^{1011}_{2022}+1\)

AH
4 tháng 1 2021 lúc 23:56

Lời giải:

Ta sẽ đi CM đẳng thức tổng quát:

\((C^1_{2n})^2-(C^2_{2n})^2+(C^3_{2n})^2-....+(C^{2n-1}_{2n})^2-(C^{2n}_{2n})^2=C^n_{2n}+1\) với $n$ lẻ.

Theo nhị thức Newton ta có:

\((x^2-1)^{2n}=C^0_{2n}-C^1_{2n}x^2+C^2_{2n}x^4-....-C^n_{2n}x^{2n}+...+C^{2n}_{2n}x^{4n}\). Trong này, hệ số của $x^{2n}$ là $-C^n_{2n}$

Tiếp tục sử dụng nhị thức Newton:

\((x^2-1)^{2n}=(x+1)^{2n}(x-1)^{2n}=(C^0_{2n}+C^1_{2n}+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n})(C^0_{2n}x^{2n}-C^1_{2n}x^{2n-1}+C^2_{2n}x^{2n-2}-...+C^{2n}_{2n})\). Trong này, hệ số của $x^{2n}$ là

\((C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

Do đó:

\(-C^n_{2n}=(C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

\(\Leftrightarrow -C^n_{2n}=1-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

\(\Leftrightarrow (C^1_{2n})^2-(C^2_{2n})^2+...-(C^2_{2n})^2=1+C^n_{2n}\) 

Thay $n=1011$ ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
PD
Xem chi tiết
NK
Xem chi tiết
BB
Xem chi tiết
DH
Xem chi tiết
NV
Xem chi tiết
PD
Xem chi tiết
CG
Xem chi tiết
MC
Xem chi tiết