Chương I - Căn bậc hai. Căn bậc ba

TD

bài 1:
a) D = \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b) E = \(\sqrt[3]{\sqrt{5}-2}+\sqrt[3]{\sqrt{5}+2}\)
c) F =\(\sqrt[3]{182+\sqrt{33125}}+\sqrt[3]{182-\sqrt{33125}}\)
bài 2:
a) C = \(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\)
b) D = \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\frac{1}{2-\sqrt{3}}\)
c) E =\(\frac{3-x^2}{x+\sqrt{3}}\) với x\(\ne-\sqrt{3}\)
d) F = \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
e) G = \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}\) (có vô hạn dấu căn)

NL
8 tháng 3 2020 lúc 22:23

a/ \(D\sqrt{2}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\Rightarrow D=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

b/\(2E=\sqrt[3]{8\sqrt{5}-16}+\sqrt[3]{8\sqrt{5}+16}\)

\(=\sqrt[3]{5\sqrt{5}-3.5.1+3\sqrt{5}-1}+\sqrt[3]{5\sqrt{5}+3.5.1+3\sqrt{5}+1}\)

\(=\sqrt[3]{\left(\sqrt{5}-1\right)^3}+\sqrt[3]{\left(\sqrt{5}+1\right)^3}=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

\(\Rightarrow E=\sqrt{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 3 2020 lúc 22:31

c/

\(F=\sqrt[3]{182+25\sqrt{53}}+\sqrt[3]{182-25\sqrt{53}}\)

\(F^3=364+3F\sqrt[3]{182^2-33125}=364-3F\)

\(\Leftrightarrow F^3+3F-364=0\)

\(\Leftrightarrow\left(F-7\right)\left(F^2+7F+52\right)=0\)

\(\Rightarrow F=7\)

Bài 2:

a/ \(C=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}-\sqrt{3}\right)\left(\sqrt{4}+\sqrt{3}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}\)

\(=\sqrt{4}-1=2-1=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 3 2020 lúc 22:36

Bài 2

b/

\(D=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)

\(=\sqrt{2}\)

c/

\(E=\frac{\left(\sqrt{3}-x\right)\left(\sqrt{3}+x\right)}{x+\sqrt{3}}=\sqrt{3}-x\)

d/

\(F=\frac{\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{2020}-\sqrt{2019}}{\left(\sqrt{2020}-\sqrt{2019}\right)\left(\sqrt{2020}+\sqrt{2019}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)

e/

\(G=\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) (G>0)

\(\Rightarrow G^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}\)

\(\Rightarrow G^2=2+G\)

\(\Rightarrow G^2-G-2=0\Rightarrow\left(G+1\right)\left(G-2\right)=0\)

\(\Rightarrow G=2\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KT
Xem chi tiết
HT
Xem chi tiết
HN
Xem chi tiết
NA
Xem chi tiết
LN
Xem chi tiết
ET
Xem chi tiết
AD
Xem chi tiết
HC
Xem chi tiết
HS
Xem chi tiết