Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c>0.CMR:
\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\ge16\)
Help!
Cho a,b,c dương. Chứng minh
\(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(c+a\right)^2}\ge\dfrac{3\sqrt{3abc\left(a+b+c\right)}.\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)^3}\)
Cho 3 số dương a,b,c
CMR : \(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(a+c\right)^2}\ge\dfrac{9}{4\left(ab+ac+bc\right)}\)
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
a)cho a,b,c > 0 . Cmr: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
b)cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\) . Cmr: \(\left(a^2b+b^2c+c^2a\right)\left(a+b+c\right)\ge9abc\)
cho a,b,c > 0 thỏa mãn ab+bc+ca=1. Cmr:
\(\left(a^2+2b^2+3\right)\left(b^2+2c^2+3\right)\left(c^2+2a^2+3\right)\ge64\)
cho cac so thuc duong a b c thoa a^2+b^2+c^2>=3 chung minh
\(\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}+\frac{\left(b+1\right)\left(c+2\right)}{\left(c+1\right)\left(c+5\right)}+\frac{\left(c+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+5\right)}\ge\frac{3}{2}\)
Cho a,b,c>0 và \(a+b+c=\frac{3}{2}\).CMR:
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge\frac{27}{8}\)
Cho a,b,c là các số thực. CMR:
\(\frac{-1}{8}\le\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(1-ab\right)\left(1-bc\right)\left(1-ca\right)}{\left(1+a^2\right)^2\left(1+b^2\right)^2\left(1+c^2\right)^2}\le\frac{1}{8}\).
Cho a,b,c>0.CMR:
\(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\ge28\)
Cho a,b,c >0 TM\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=2\). CMR:\(ab+bc+ca\ge12\)
Help me gấp với các god Trần Thanh Phương?Amanda?tthLightning FarronNguyễn Việt LâmAkai Haruma