Bài 1: Cho \(\text{a+b+c=ab+bc+ac=abc}\) \(\ne\) \(0\) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Tính \(A=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Bài 2: Cho \(a,b,c\ne0\). CMR nếu \(x,y\) thỏa mãn :
\(\dfrac{a}{c}x+\dfrac{b}{c}y=\dfrac{b}{a}x+\dfrac{c}{a}y=\dfrac{c}{b}x+\dfrac{a}{b}y=1\)
thì \(\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=3\)
Bài 3: Cho \(ax+by+cz=0\) và \(a+b+c=\dfrac{1}{2019}\)
Tính \(A=\dfrac{a^2x^2+b^2y^2+c^2z^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
cho a,b,c>0
CM \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) và \(a+b+c=3abc\). Chứng minh \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
Cho a, b, c khác 0: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính M = \(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
Cho a,b,c là 3 số đôi 1 khác nhau
Và \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)
CM \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Cho a,b,c \(\ne\)0 thỏa a+b+c=0. Cmr: \(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)= (\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\))2
Cho a,b,c đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) . Rút gọn
N=\(\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}\)
M=\(\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
Cho a,b,c và x,y,z là các số khác nhau và khác không chứng minh rằng nếu:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) và \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) thì \(\dfrac{x^2}{a^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{c^2}=1\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
Chứng minh rằng :\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)